Begin typing your search above and press return to search. Press Esc to cancel.

Weibull-Verteilung


« Zurück zum Lexikon

Weibull-Verteilung

Weibull-Verteilung Definition

Die Weibull-Verteilung ist eine zweiparametrige Familie von stetigen Wahrscheinlichkeitsverteilungen über der Menge der positiven reellen Zahlen. Bei geeigneter Wahl ihrer zwei Parameter ähnelt sie einer Normalverteilung, einer Exponentialverteilung oder anderen asymmetrischen Verteilungen. Sie wird unter anderem zur statistischen Modellierung von Windgeschwindigkeiten oder zur Beschreibung der Lebensdauer und Ausfallhäufigkeit von elektronischen Bauelementen oder (spröden) Werkstoffen herangezogen. Anders als eine Exponentialverteilung berücksichtigt sie die Vorgeschichte eines Objekts, sie ist gedächtnisbehaftet und berücksichtigt die Alterung eines Bauelements nicht nur mit der Zeit, sondern in Abhängigkeit von seinem Einsatz. Sie lässt sich an steigende, konstante und fallende Ausfallraten technischer Systeme anpassen. Benannt ist die Verteilung nach dem schwedischen Ingenieur und Mathematiker Waloddi Weibull. Eine besondere Bedeutung hat sie in der Ereigniszeitanalyse.

Weibull-Verteilung
Dichtefunktion
Weibull PDF.svg Dichtefunktion für verschiedene Formparameter
Verteilungsfunktion
Weibull CDF.svg Verteilungsfunktion für verschiedene Formparameter k
Parameter — Formparameter
— inverser Skalenparameter
Träger
Dichtefunktion
Verteilungsfunktion
Erwartungswert
Varianz

Die Weibull-Verteilung ist eine zweiparametrige Familie von stetigen Wahrscheinlichkeitsverteilungen über der Menge der positiven reellen Zahlen. Bei geeigneter Wahl ihrer zwei Parameter ähnelt sie einer Normalverteilung, einer Exponentialverteilung oder anderen asymmetrischen Verteilungen. Sie wird unter anderem zur statistischen Modellierung von Windgeschwindigkeiten oder zur Beschreibung der Lebensdauer und Ausfallhäufigkeit von elektronischen Bauelementen oder (spröden) Werkstoffen herangezogen. Anders als eine Exponentialverteilung berücksichtigt sie die Vorgeschichte eines Objekts, sie ist gedächtnisbehaftet und berücksichtigt die Alterung eines Bauelements nicht nur mit der Zeit, sondern in Abhängigkeit von seinem Einsatz. Sie lässt sich an steigende, konstante und fallende Ausfallraten technischer Systeme anpassen. Benannt ist die Verteilung nach dem schwedischen Ingenieur und Mathematiker Waloddi Weibull. Eine besondere Bedeutung hat sie in der Ereigniszeitanalyse.

Definition

Die Weibull-Verteilung hat zwei Parameter.

Skalenparameter

Der Skalenparameter ist .

In manchen Anwendungen, insbesondere bei Zeitabhängigkeiten wird durch seinen Kehrwert, die charakteristische Lebensdauer , ersetzt. ist bei Lebensdauer-Analysen jene Zeitspanne, nach der ca. 63,2 % der Einheiten ausgefallen sind. Dieser Wert ist eine Kenngröße der Weibull-Verteilung.

.

Wird kein Skalenparameter angegeben, so ist implizit gemeint.

Formparameter

Der oder Weibull-Modul ist der Parameter .

Alternativ werden gerne die Buchstaben oder verwendet.

In der Praxis typische Werte liegen im Bereich .

Durch den Formparameter lassen sich verschiedene speziellere Wahrscheinlichkeitsverteilungen realisieren:

Dichte, Verteilung etc.

Gegeben sei eine Weibull-Verteilung mit Parametern .

Die Dichtefunktion ist:

Die Verteilungsfunktion ist:

Die Überlebensfunktion, oder Zuverlässigkeitsfunktion ist gegeben durch:

Die Ausfallrate ist[1]:

.

Eine andere verbreitete Konvention ist die Parametrisierung durch , d. h. die Weibull-Verteilung wird definiert als nichtnegative Zufallsvariable mit der Dichtefunktion

mit , .

Diese Darstellung wird häufig im englischsprachigen Raum und bei Statistikprogrammen verwendet.

Eigenschaften

Erwartungswert

Der Erwartungswert der Weibull-Verteilung ist

mit der Gammafunktion .

Varianz

Die Varianz der Verteilung ist

.

Schiefe

Die Schiefe der Verteilung ist

mit dem Mittelwert und der Standardabweichung .

Entropie

Die Entropie der Weibull-Verteilung (ausgedrückt in nats) beträgt

wobei die Euler-Mascheroni-Konstante bezeichnet.

Anwendungen

Bei Systemen mit unterschiedlichen Ausfallursachen wie beispielsweise technischen Komponenten lassen sich diese mit drei Weibull-Verteilungen so abbilden, dass sich eine „Badewannen-Kurve“ ergibt.[2] Die Verteilungen decken dann diese drei Bereiche ab:[3]

  • Frühausfälle mit , beispielsweise in der Einlaufphase („Kinderkrankheiten“).
  • Zufällige Ausfälle mit in der Betriebsphase
  • Ermüdungs- und Verschleißausfälle am Ende der Produktlebensdauer mit

In der mechanischen Verfahrenstechnik findet die Weibull-Verteilung Anwendung als eine spezielle Partikelgrößenverteilung. Hier wird sie allerdings als RRSB-Verteilung (nach Rosin, Rammler, Sperling und Bennet) bezeichnet.

Für gehört die Verteilung zu den Verteilungen mit schweren Rändern, deren Dichte langsamer als exponentiell abfällt.

Weibullnetz

Weibull-Verteilung 1
Weibullnetz

Trägt man die Verteilung in der Form

in einem doppelt logarithmischen Diagramm auf, welches auch als Weibullnetz bezeichnet wird, ergibt sich eine Gerade, bei der man den Parameter leicht als Steigung ablesen kann. Die charakteristische Lebensdauer kann dann folgendermaßen bestimmt werden:

.

Hierbei bezeichnet den y-Achsenabschnitt.

Oft kommt es vor, dass trotz Beanspruchung erst nach einer anfänglichen Betriebszeit Ausfälle eintreten (beispielsweise infolge des Verschleiß von Bremsbelägen). Dies kann in der Weibull-Verteilungsfunktion berücksichtigt werden. Sie hat dann folgendes Aussehen:

Trägt man die Funktion wieder auf, ergibt sich keine Gerade, sondern eine nach oben konvexe Kurve. Verschiebt man alle Punkte um den Wert , so geht die Kurve in eine Gerade über.

Windgeschwindigkeit

Weibull-Verteilung 2
Windgeschwindigkeitshäufigkeiten.

Die Grafik zeigt beispielhaft eine Messreihe von Windgeschwindigkeiten (grün). Ein Gauß-Fit (blau) nähert sich den Zahlen nur ungenügend. Weder gibt es negative Windgeschwindigkeiten, noch ist die Verteilung symmetrisch. Eine Weibull-Verteilung führt einen zweiten freien Parameter ein. Durch sie wird die Verteilung für große und kleine Windgeschwindigkeiten sehr gut approximiert, ebenso die Werte um das Maximum. Aus den Fitparametern und folgt ein Erwartungswert von 4,5 m/s, in guter Übereinstimmung mit dem Wert von 4,6 m/s bestimmt aus den Messwerten.

Beziehung zu anderen Verteilungen

Beziehung zur Exponentialverteilung

  • Man sieht, dass der Fall die Exponentialverteilung ergibt. Mit anderen Worten: Die Exponentialverteilung behandelt Probleme mit konstanter Ausfallrate . Untersucht man jedoch Fragestellungen mit steigender () oder fallender () Ausfallrate, dann geht man von der Exponentialverteilung zur Weibull-Verteilung über.
  • Ist der Parameter , dann wird ein System mit einer mit der Zeit ansteigenden Ausfallrate, also ein alterndes System, beschrieben.
  • Besitzt eine Exponentialverteilung mit Parameter , dann besitzt die Zufallsvariable eine Weibull-Verteilung . Zum Beweis betrachte man die Verteilungsfunktion von :
    .
    Das ist die Verteilungsfunktion einer Weibull-Verteilung.

Gestreckte Exponentialfunktion

Die Funktion

wird als gestreckte Exponentialfunktion bezeichnet.

Siehe auch

Literatur

Weblinks

Commons: Weibull-Verteilung – Sammlung von Bildern, Videos und Audiodateien

Quellen

  1. Ayse Kizilersu, Markus Kreer, Anthony W. Thomas: The Weibull distribution. In: Significance. 15, Nr. 2, 2018, S. 10–11. doi:10.1111/j.1740-9713.2018.01123.x.
  2. Siehe auch: en:Exponentiated Weibull distribution
  3. Zuverlässigkeitssicherung bei Automobilherstellern und Lieferanten. 3. Auflage. VDA, Frankfurt a. M. 2000, ISSN 0943-9412, Abschnitt 2.4.3. (Qualitätsmanagement in der Automobilindustrie 3)

Mehr Informationen?

Print Friendly, PDF & Email
« Zurück zum Lexikon (Übersicht)